

How to compare the competition

Performance wise: Main measures that tell it all: the easy ones

PRODUCT

& Competition

The longer the better

Hull LWL Vs LOA is major: it is best if it equals 1, i.e.: LWL=LOA

LWL is THE naval architecture best speed capacity criteria

On displacement hulls (all cruising cats without foils), Theoretical Max Speed is given by a fomula:

Hull speed in knots = $V((LWL \times g) / (2 \times pi)) \times 3600/1852$

PRODUCT & Competition

PERFORMANCES³

11,00 8,06 11,10 8,09 6,56 7,30 6,61 7,40 7,50 6,65 7,60 6,70 7,70 6.74 7,80 6,78 7,90 6,83 8,00 6,87 8,10 6,91 8,20 6,96 8,30 7,00 7,04 8,40 8,50 7,08 8,60 7,12 7,16 8,70 8,80 7,21 8,90 7,25 7,29 9,00 9,10 7,33 7,37 9,20 7,41 9,30 9,40 7,45 7,49 9,50 7,53 9,60 9,70 7,56 9,80 7,60 9,90 7,64 10,00 7,68 7,72 10,10

Hull speed

LWL

LWL	Hull speed					
14,00	9,09					
14,10	9,12					
14,20	9,15					
14,30	9,18					
14,40	9,22					
14,50	9,25					
14,60	9,28					
14,70	9,31					
14,80	9,34					
14,90	9,38					
15,00	9,41					
15,10	9,44					
15,20	9,47					
15,30	9,50					
15,40	9,53					
15,50	9,56					
15,60	9,59					
15,70	9,62					
15,80	9,65					
15,90	9,69					
16,00	9,72					
16,10	9,75					
16,20	9,78					
16,30	9,81					
16,40	9,84					
16,50	9,87					
16,60	9,90					
16,70	9,93					
16,80	9,96					
16,90	9,99					
17,00	10,01					

LWL	Hull speed					
17,00	10,01					
17,10	10,04					
17,20	10,07					
17,30	10,10					
17,40	10,13					
17,50	10,16					
17,60	10,19					
17,70	10,22					
17,80	10,25					
17,90	10,28					
18,00	10,30					
18,10	10,33					
18,20	10,36					
18,30	10,39					
18,40	10,42					
18,50	10,45					
18,60	10,48					
18,70	10,50					
18,80	10,53					
18,90	10,56					
19,00	10,59					
19,10	10,62					
19,20	10,64					
19,30	10,67					
19,40	10,70					
19,50	10,73					
19,60	10,75					
19,70	10,78					
19,80	10,81					
19,90	10,84					
20,00	10,86					

LWL	Hull speed				
20,00	10,86				
20,10	10,89				
20,20	10,92				
20,30	10,94				
20,40	10,97				
20,50	11,00				
20,60	11,02				
20,70	11,05				
20,80	11,08				
20,90	11,10				
21,00	11,13				
21,10	11,16				
21,20	11,18				
21,30	11,21				
21,40	11,24				
21,50	11,26				
21,60	11,29				
21,70	11,31				
21,80	11,34				
21,90	11,37				
22,00	11,39				
22,10	11,42				
22,20	11,44				
22,30	11,47				
22,40	11,50				
22,50	11,52				
22,60	11,55				
22,70	11,57				
22,80	11,60				
22,90	11,62				
23,00	11,65				

1 \\/\

Hull speed

LWL in meter g is gravity = 9,81 pi = 3,1416...

This is a base

Some parameters will help exceeding these numbers

Some others will bring them down

How to compare the competition

Sail Area

PRODUCT & Competition

The most, the best

But

The best thought-out The most performance

Sail area is obviously a major criteria

It shall be considered through various points of view:

- Overall upwind sail area (standard & option)
- Downwind sails options (what sails and which area)
- Balance between Main & jib
- Aspect ratio (Main & Genoa/jib)
- Main sail roach
- Ease of use (trim, reduce, manoeuver)

The combination of these parameters must result in a fair compromise: a cathedral of sails so complicated to use that it is most of the time poorly trimmed is not a sign of performance

How to compare the competition

Displacement

EEC Displacement

PRODUCT & Competition

Make up your mind!

Check what is counted

Compare with available ratios

Look at sailing real performance

Lagoon will not cheat

- 3 EEC measures:
 - Empty DSPL: Mec: mobile parts are removed, but to what point?
 - Light DSPL: MLC: Minimum displacement ready to sail: the measure Lagoon is providing
 - Loaded DSPL: MLDC: All the options + max crew capacity: unrealistic number that provides the PAYLOAD: how much a boat can be loaded above Light DSPL
- We will provide a Mec for Dealers to compare with competition
- Some competitors cheat with the GRP/Wood weight
- When comparing competition check HL/PL and B/L: if the first one is lower and the second higher than the compared Lagoon, there is very little possibility that the competitor is lighter, unless they use carbon and/or epoxy

How to compare the competition

Displacement

EEC Displacement

Lagoon will help you compare but will remain within MEC limits

PRODUCT &

Competition

Remember

Some competitors

Do provide

Wrong GRP/Wood weight...

	Displaceme				
Empty	MEC				
ight	MLC				
oaded	MLDC				
Payload					

380		400		42		450S		450F		
7 304		11 136		11 437		14 089		14 324		235
8 057	9%	11 940	7%	12 228	6%	15 001	6%	15 195	6%	194
11 016	27%	16 590	28%	16 946	28%	20 833	28%	20 946	27%	113
2 959		4 650		4 718		5 832		5 751		_

How to compare the competition

SA/DSPL

PRODUCT & Competition

Compare apples & apples

Be suspicious

Use the following presentation to fine tune YOUR SA/DSPL

Now that we have an accurate SA and a trustable DSPL...

THE number everyone loves...

..to bullshit about!

- Neutralize the units:
 - If Sail area is 100m² and DSPL 15 tonnes SA/DSPL is not just 6,67 m²/tonnes: the real formula is:

 $\rightarrow VSA / \sqrt[3]{DSPL}$

Where:

- SA = Sail Area in m²
- DSPL= weight of the boat in kg / sea water density in kg/m³
- Sea water density is 1024kg/m³
 So the 6,67m²/tonne become 4,08
- If you keep the units, a cheat of 10% in the weight of the boat results in a 10% change in the SA/DSPL m²/tonnes while neutralizing the unit show a change of only 3,3%
- Do not compare boats more than 2' apart: it is not linear
- Do not take for granted odd numbers
- Never forget: it is one of many parameters

How to compare the competition

Beam Max

PRODUCT & Competition

Be wise: be wide!

Watch out!

Beam and weight are close friends

Beam is the wisdom of compromise!

- Beam is comfort and weight
- Beam is stiffness and stress
- Beam is large gangways and marina expenses

Beam also means distance inside the two hulls:

→ According to VPLP avoiding collision between the two wakes of each hull is a major performance point

Lagoon catamarans are the beamiest of their size Vs competition

But

VPLP uses moderation to avoid too much weight and stress.

How to compare the competition

Hull sections below LWL

PRODUCT & Competition

It is not an option to choose between King size bed and performance:
we want both!

For a given Displacement

- A circular section will provide the minimum wetted surface area ...and the smallest accommodation
- A rectangular section will provide the maximum wetted surface area...and the largest accommodation
- → The good designer is the one who finds the best compromise
- There are other parameters related to this:
 - → Max hull depth
 - → Max BWL
 - → Best ratio Keel volume Vs Hull volume
 - \rightarrow Etc.

How to compare the competition **B/L**

How large is the Tennis court?

- Very simple measure that should be taken on similar Hull length
- It shows
 - Lateral stiffness
 - General accommodation capacity (to be considered together with HL/PL & BxP)
- High numbers mean more GRP
- VPLP advices to keep a large number not only for stiffness but also to have floats as apart as possible (interacting wake reduction)

PRODUCT & Competition

To compare with similar hull length

Remember:

Large B/L = weight Large B/L = good hydro Large B/L = VPLP choice

How to compare the competition

Hull Length Vs Plateform Length: HL/PL

PRODUCT & Competition

The higher the better!

Easy to get ratio

straightforward

True teller

Small HL/PL means
GRP weight
Wood & accommodation weight
More pitching
More slamming
...more accommodation

- → Anything below 1,40 is performance killer
- → Bali with values around 1,15 are obviously too heavy for good performance

How to compare the competition

Hull Length Vs Plateform Length: HL/PL

PRODUCT & Competition

Fountaine Pajot HL/PL very Low — last ones worse

R&C below 1,3

Bali close to a risky 1!

Nautitech is good

Outremer 45 best: 2!

How to compare the competition

BxP

Comfort Level Indicator

PRODUCT & Competition

- Easy to measure on a brochure
- Clearly tells you about how roomy the boat is
- Big numbers mean heavy boats

Accommodation teller

Displacement teller

Where Naval Architects and Interior Designers will never agree!

How to compare the competition

Aspect Ratio

PRODUCT & Competition

The higher the better!

Short booms are:
More performance
&
More comfort

P/E for a mainsail

Higher means more performance

- Higher center of sail area
- Shorter chords
- The highest wind =the cleanest
- Short boom is easier to maneuver
- Short E less frightening when jibing
- Better shape when reefed
- Natural move with square top mains

PRODUCT & Competition

How to compare the competition

Aspect Ratio

Lagoon 42 is the best

Lucia 40 is very low

How to compare the competition

Half angle of entrance

PRODUCT & Competition

Not Black or White

Pushing water?
Or
Sailing flat?

VPLP says: aim 17,5°

A true Naval Architect challenge

Nothing obvious here

- It tells the balance between the capacity of a vessel to go through the fluid with little resistance and its ability to damp the pitching moment
- On displacement hulls, we are coming to very small numbers to rather impressive ones
- It takes a lot of background to determine what is the right compromise: VPLP has been on this for a very long time
- It is rather difficult to measure on the competition but it can be done with a large compass at a dryland boat show (that's how I get them!)

How to compare the competition

Keel profile view

Wisdom of compromise

PRODUCT & Competition

- Deep keels are good for performance, bad for shallow waters
- Round leading edge provides disturbed flow to the sections
- More volume in the keels = better hull lines
- 50mm added draft makes a difference in upwind capacity and hull lines

Simplicity is best

Trapezoidal shape

Flat bottom

VPLP adds 50mm compared to same size competition

How to compare the competition

Mast longitudinal location

There is a goal!

- PRODUCT & Competition
- Moving the mast aft has all the benefit given when launching the 39/52:
 - More downwind sail area / Performing self tacking jib/ Short boom / High A/R / Less pitching moment
- Square top mains have made this move highly beneficial

Moving aft

Aim for LCG and Mast position same location

50% or more is the way!

How to compare the competition

Mast location Vs LCG

Longitudinal stability

PRODUCT & Competition

- A mast centered above Longitudinal Center of Gravity (LCG) is generating less pitching moment
- Momentum is affected by inertia: One meter of momentum results in 4 times the effect of the displaced load

Pitching is a killer

Reducing pitching is More speed More comfort

Mast above LCG Is the way to go!

How to compare the competition

Prismatic coefficient

PRODUCT & Competition

Look smart at the Yacht Club!

Difficult to get

Tells a lot about the modernity of the design

One foot in Naval Architecture

Where is the volume under the sea?

- It compares the largest section under the sea with the volume of vessel under the sea
- It is very difficult to get (but can be done on a dryland boat show!)
- Analysis is very different from monohull to catamarans and from displacement hulls to planning ones.

On a displacement sailing catamaran:

- High prismatic means a lot of volume fore and aft
 - → High angle of entrance
 - → Good pitching reduction
- Low prismatic means thin entrance
 - → Old fashion multihulls very good in light airs and no wave, very bad in all other situations
- VPLP says: the right number is around 0,59

PRODUCT & Competition

How to compare the competition Performance wise

Velocity Prediction Program analysis

PRODUCT

Competition

How to compare the competition

Velocity Prediction program analysis

How to compare?

@ 6kts

TWS Oceanis 11,2% faster than Hanse

@ 10kts

TWS Hanse 1,1% faster than Oceanis

@ 20kts

TWS Oceanis 1,5% faster than Hanse

VPP is mean!

Use caution to compare

Yacht Design numbers are pessimistic

Sailors measures are optimistic

How to compare?

- Only look at %tage difference between 2 boat speeds at same wind angle & same wind speed
 - → Boat speed itself is irrelevant

How to cheat?

- Displacement used
- VCG used
- Code 0, downwind sails used
- Sails stiffness, sea state

How to compare the competition

Performance wise: velocity Prediction program analysis

PRODUCT & Competition

Watch out!

We all want to look good

Check the smoothness of the curves

How to cheat?

How to compare the competition

Performance wise: velocity Prediction program analysis

How to know what is going on?

PRODUCT & Competition

Use magazines & sea trials to get real numbers and compare on the curves

How to compare the competition

Performance wise: translation on the water

PRODUCT & Competition

Love your autopilot

8

Put it at work!

Average speeds: what a cruising cat is looking for

Good sail trim and proper navigation = better than steering

How to compare the competition

Performance wise: translation on the water

PRODUCT & Competition Sailing conditions: it writes the tempo

Wind steadiness, Sea state, waves crest span, direction to the wind

Allow one thing to the sea:

It is stronger than you & your boat

Never overload

How to compare the competition

Performance wise: translation on the water

PRODUCT & Competition Ship loading: Payload is critical for durable performance

Why is my average speed increasing through the days of a journey?

The lighter is the boat through a passage the faster she will go

You have drunk all the beverages &

eaten all the food:

YOU ARE LIGHTER!

